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Abstract
We have studied the problem of phase stability in NiPt alloy systems. We
have used the augmented space recursion based on the tight binding-linearized
muffin-tin orbital as the method for studying the electronic structure of the
alloys. In particular, we have used the relativistic generalization of our earlier
technique. We note that, in order to predict the proper ground state structures
and energetics, in addition to relativistic effects, we have to take into account
charge transfer effects with precision.

1. Introduction

There has been growing interest in the study of alloy phase ordering and segregation using
first-principles techniques. In order to study these phenomena one needs a derivation of the
configurational energy for the alloy system. Different models have been proposed in which the
configurational energies are expressed in terms of effective multi-site interactions, in particular
effective pair interactions [1]. The analysis of alloy ordering tendencies and phase stability
reduces to the accurate and reliable determination of effective pair interactions. There are two
different approaches for obtaining effective pair interactions. One approach is to start with
electronic structure calculations of the total energy of ordered super-structures of the alloy and
to invert these total energies to obtain the effective pair interactions. This is the Connolly–
Williams method [2]. The other approach is to start from the completely disordered phase, set
up a perturbation in the form of concentration fluctuations associated with an ordered phase
and study whether the alloy can sustain such a perturbation. This includes approaches like
the generalized perturbation method (GPM) [3] and the embedded cluster method (ECM) [4].
Most of the works on electronic structure of the disordered alloys have been based so far
on the coherent potential approximation (CPA). The CPA, being a single-site approximation,
cannot take into account the effect at a site of its immediate environment. In an attempt to go
beyond the single-site approximation, de Fontaine and his group followed a different approach
of direct configurational averaging (DCA) [5], without resorting to any kind of single-site
approximation. The effective pair and multi-site interactions were calculated directly in real
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space for given configurations and the averaging was done in a brute force way by summing over
different configurations. Invariably, the number of configurations was finite and convergence
of the results with increasing numbers of configurations is yet to be available.

Saha et al [6] have introduced the augmented space recursion (ASR) based on the
augmented space formalism (ASF) first suggested by Mookerjee [7] coupled with the recursion
method of Haydock et al [8]. Within ASF the configuration averaging is carried out without
having to resort to any single-site approximation. The recursion method allows us to take
into account the effect of the environment of a given site. Moreover, the convergence of
various physical quantities calculated through recursion with the number of recursion steps
and subsequent termination has been studied in great detail [9]. Among the advantages of
the ASR in going beyond the single-site approximation is the possibility of inclusion of local
lattice distortions, which is important in the case of alloys with a large size mismatch between
components, as in the case of NiPt. In an earlier paper Saha and Mookerjee [10] had discussed
the effect of local lattice distortion on the electronic structures of CuPd and CuBe alloys using
the ASR. This allows the structure matrices to randomly take values S AA

L L ′ , S AB
L L ′ , SB A

L L ′ or SB B
L L ′ ,

depending on the occupation of the sites R and R′. The ASR, coupled with the orbital peeling
technique [11] to evaluate small energy differences associated with band structure energies,
has been successfully used in the past to describe the phase formation in alloys [12].

In the present paper we focus on the application of this method for a phase stability
study in NiPt alloys. This system of alloys is of importance because of the possible need for
relativistic corrections due to the heavy mass of Pt as well as effects due to charge transfer and
a size mismatch between Ni and Pt. This therefore forms a perfect candidate for testing
the applicability and limitations of our formalism, bringing in the relative importance of
various effects for the accurate description of the system. The previous studies of ordered
and substitutionally disordered NiPt alloy systems have shown the importance of the inclusion
of relativistic effects. Treglia and Ducastelle [13] had shown that late transition metal
alloys should exhibit phase separating tendencies but they argue that the exceptional ordering
behaviour of NiPt is due to the relativistic corrections. In a first-principles study, Pinski
et al [14] found that the disordered fcc Ni1−x Ptx alloy at x = 0.5, calculated by means of
the single-site KKR-CPA, becomes unstable at low temperatures, due to a perturbation by a
〈100〉 ordering wave and concluded that the corresponding long-range ordered (LRO) state,
i.e. the L10 structure, should be the predicted ground state for which the large size mismatch
between Ni and Pt plays the main role and the effect of relativity can be neglected. However,
Lu et al [15] pointed out that a local ordering tendency determined by perturbation analysis
does not necessarily predict the correct LRO ground state if the size mismatch of the two
elements is large, as is the case for Ni and Pt, and concluded that relativity is the sole reason
for long-range order in NiPt. The work of Singh et al [16] demonstrated that the relativistic
effects do stabilize the ordered structures over the disordered solid solution. Recently Ruban
et al [17] have studied the problem of phase stability in NiPt alloy systems based on ordered
calculations with the inclusion of the Madelung energy with multipole corrections. In this
paper, we examine the relativistic treatment of the Hamiltonian and charge transfer and lattice
relaxation effects on the electronic structure and phase stability of face-centred cubic NiPt
systems at 25, 50 and 75% of concentration of Pt. As mentioned already, the ASR technique,
which we use here, is capable of taking into account environmental effects, effects of short-
range order and local lattice relaxation effects due to size mismatches. To circumvent the
problem of the calculation of the Madelung energy contribution for the disordered system, we
have used the appropriate effective atomic sphere radii for each of the constituents so that the
spheres are neutral on average and this has been done with precision at each concentration [18].
We have shown that without the inclusion of relativistic effects the formation energy comes out
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to be positive, which contradicts experimental results. With the scalar relativistic corrections,
involving mass–velocity and Darwin terms, the formation energy comes out to be negative,
indicating that the relativistic effects play an important role in NiPt alloys, in agreement with
earlier studies. We find that the charge transfer effects also have an important role to play
in deciding on the correct ground state structure, particularly when the concentration of Pt is
high. Our study of transition temperatures based on a mean field theory could reproduce the
qualitative experimental trends.

2. Formalism

2.1. The effective pair interactions

We start from a completely disordered alloy. Each site R has an occupation variable nR

associated with it. For a homogeneous perfect disorder 〈nR〉 = x , where x is the concentration
of one of the components of the alloy. In this homogeneously disordered system we now
introduce fluctuations in the occupation variable at each site: δxR = nR − x . Expanding the
total energy in this configuration about the energy of the perfectly disordered state we get

E(x) = E (0) +
N∑

R=1

E (1)
R δxR +

N∑
R R′=1

E (2)
R R′ δxRδxR′ + · · · . (1)

The coefficients E (0), E (1)
R . . . are the effective renormalized cluster interactions. E (0) is the

energy of the averaged disordered medium. The renormalized pair interactions E (2)

R R′ express
the correlation between two sites and are the most dominant quantities for the analysis of phase
stability. We will retain terms up to pair interactions in the configuration energy expansion.
Higher-order interactions may be included for a more accurate and complete description. For
the phase stability study it is the pair interaction which plays the dominant role.

The total energy of a solid may be separated into two terms: a one-electron band
contribution EB S and the electrostatic contribution EE S . The renormalized cluster interactions
defined in (1) should, in principle, include both EB S and EE S contributions. Since the
renormalized cluster interactions involve the difference of cluster energies, it is usually assumed
that the electrostatic terms cancel out and only the band structure contribution is important.
Such an assumption, which is not rigorously true, has been shown to be approximately valid in
a number of alloy systems [19]. Considering only the band structure contribution, the effective
pair interactions may be written as

E (2)

R R′ = −
∫ EF

−∞
dE

{
− 1

π
Im log

∑
I J

det(G I J (E))ξI J

}
(2)

where G I J represents the configurationally averaged Green function corresponding to the
disordered Hamiltonian whose R and R′ sites are occupied by I th and J th types of atom, and

ξI J =
{

+1 if I = J

−1 if I �= J .

The behaviour of this function is quite complicated and hence the integration by standard
routines (e.g. Simpson’s rule or Chebyshev polynomials) is difficult, involving many iterations
before convergence is achieved. Furthermore the integrand is multi-valued, being simply the
phase of

∑
I J det(G I J )ξI J . The way out for this was suggested by Burke [11], which relies

on the repeated application of the partition theorem on the Hamiltonian H I J . The final result
is given simply in terms of the zeros and poles of the Green function in the region E < EF :

E (2)
R R′ = 2

∑
I J

ξI J

� max∑
k=0

[zk,I J∑
j=1

Z k,I J
j −

pk,I J∑
j=1

Pk,I J
j + (pk,I J − zk,I J )EF

]
(3)
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where Z k,I J
j and Pk,I J

j are the zeros and poles of the peeled Green function G I J
k of the

disordered Hamiltonian with occupancy at sites R and R′ by I and J of which the first (k − 1)

rows and columns have been deleted. pk,I J and zk,I J are the number of poles and zeros in the
energy region below EF . The factor of 2 accounts for the spin degeneracy.

2.2. The augmented space recursion

As discussed in the previous section, the calculation of the effective pair interaction in our
formalism reduces to the determination of the peeled configuration averaged Green functions
〈G I J

k 〉. We shall employ the ASR coupled with the tight-binding linearized muffin tin
orbital (TB-LMTO) method introduced by Andersen and Jepsen [20] for a first-principles
determination of these configuration averaged quantities. We shall take the most localized,
sparse tight binding first-order Hamiltonian derived systematically from the LMTO theory
within the atomic sphere approximation (ASA) and generalized to random alloys. The ASR
method has been described at great length in earlier papers [6–9, 12, 21, 22]. We refer the
readers to these references for further details. We shall give here the final form of the effective
Hamiltonian used for recursion in augmented space for the calculation of the peeled Green
functions:

H I J
k =

� max∑
�=k

C I
R,�a†

RaR +
� max∑
�=1

C J
R′,� a†

R′aR′ +
∑

R′′ �=R,R′

� max∑
�=1

(C B
R′′,� + δC�M̃

R′′
)a†

R′′aR′′ + · · ·

+
∑

R′′ �=R

∑
L=k

∑
L ′

�
1/2,I
R,� SR,R′′

L L ′ (�
1/2,B
R′′,�′ + δ�

1/2
�′ M̃ R′′

)a†
RaR′′ + · · ·

+
∑

R′′ �=R′

∑
L

∑
L ′

�
1/2,I
R′,� SR′,R′′

L L ′ (�
1/2,B
R′′,�′ + δ�

1/2
�′ M̃ R′′

)a†
R′aR′′ + · · ·

+
∑

R′′ �=R

∑
L

∑
L ′=k

(�
1/2,B
R′′,� + δ�

1/2
� M̃ R′′

)SR′′,R
L L ′ �

1/2,I
R,�′ a†

R′′aR + · · ·

+
∑

R′′ �=R′

∑
L

∑
L ′

(�
1/2,B
R′′,� + δ�

1/2
� M̃ R′′

)SR′′ ,R′
L L ′ �

1/2,I
R′,�′ a†

R′′ aR′ + · · ·

+
∑

R′′ �=R,R′

∑
R′′′ �=R,R′

∑
L

∑
L ′

(�
1/2,B
R′′,� + δ�

1/2
� M̃ R′′

)SR′′ ,R′′′
L L ′

× (�
1/2,B
R′′′,�′ + δ�

1/2
�′ M̃ R′′′

)(a†
R′′aR′′′ + a†

R′′′aR′′) (4)

where L is a composite index (lm).
For a binary distribution M̃ R is given by

M̃ R = x b†
R↑bR↑ + (1 − x) b†

R↓bR↓ +
√

x(1 − x)(b†
R↑bR↓ + b†

R↓bR↑). (5)

For non-isochoric alloys, the difference in atomic radii of the constituents leads to changes in
the electronic density of states, as confirmed by experiment [23] and approximate theoretical
techniques [24]. One thus expects that the mismatch of size produces, in addition to a relaxation
energy ER contribution, a change in the band structure. Within our ASR, off-diagonal disorder
in the structure matrix Sβ , because of local lattice distortions due to the size mismatch of
the constituents, can be handled on the same footing as diagonal disorder in the potential
parameters [22].

The ASR with the TB-LMTO Hamiltonian coupled with orbital peeling allows us
to compute configuration averaged pair potentials directly, without resorting to any direct
averaging over a finite number of configurations. In an earlier paper [7] we have discussed
how one uses the local symmetries of the augmented space to reduce the Hamiltonian and carry
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out the recursion on a reducible subspace of much lower rank. If we fix the occupation of two
sites, the local symmetry of the augmented space is lowered (this is very similar to the lowering
of spherical symmetry to cylindrical symmetry when a preferred direction is introduced in an
isotropic system). We may then carry out the recursion in a suitably reduced subspace.

2.3. Static concentration wave method

The static concentration wave (SCW) was proposed as a theory for ordering by
Khachaturyan [25, 26]. The occupation probability n(�r) plays the key role in this theory.
This function n(�r) that determines the distribution of solute atoms in an ordered phase can be
represented as a superposition of concentration waves:

n(�r ) = c + 1
2

∑
j

[Q( �k j) exp(i �k j · �r) + Q∗( �k j) exp(−i �k j · �r)] (6)

where exp(i �k j · �r) is a SCW, �k j is a non-zero wavevector defined in the first Brillouin zone of
the disordered alloy, �r is a site vector of the lattice {�r}, the index j denotes the wavevectors in
the Brillouin zone, Q( �k j) is the SCW amplitude and c is the atomic fraction of the alloying
element.

The study of phase stability requires accurate approximations to the configurational energy
as well as the use of statistical models to obtain the configurational entropy. The configurational
energy within the pair interaction can be represented in Fourier space as the product of
the Fourier transform of the effective pair interaction V (�k) and that of the pair correlation
function Q(�k):

E 

(

N

2

) ∑
�k

V (�k)Q(�k)

where N is the number of atoms. Minimization of E will naturally occur for states of order
characterized by maxima in the Q(�k)pair correlation spectrum located in regions of the absolute
minima of V (�k). Consequently, much can be predicted about the types of ordering to be
expected from a study of the shape of V (�k), particularly from a search of its absolute minima
(special points). At these points,

|∇h V (h)| = 0.

This was pointed out by Lifshitz [27, 28] and Khachaturyan [25, 26]. Different types of ordered
structures can be related directly to the minima of V (�k). In other words, given the knowledge
of concentration wavevectors, one can readily predict the most stable ordered structure of the
system at low temperatures. This is comparable to the knowledge derived from studies like
those based on x-ray, electron and neutron diffraction. A peak at the � point, �k = (000),
indicates phase separation, while a peak at the � point, �k = (100), in a fcc lattice suggests
ordering. Peaks away from the special points may correspond to the formation of long period
super-structures. Within a simple mean field approximation, the instability can be obtained in
the following way: if we add the expression for the dominant quadratic term in the average
energy to that of the configurational entropy under the simple mean field approximation we
obtain an expression for the free energy:

F =
∑
i, j

V 2
i j(ni − c)(n j − c) + kB T

∑
i

[ni ln ni + (1 − ni ) ln(1 − ni )]

where ni is the concentration of species A at the i th site and c is the average concentration of that
species. If we define a configuration variable γ 0

i as 〈δni 〉0 (the symbol 〈· · ·〉0 denotes micro-



1034 D Paudyal et al

canonical averaging), which is the variable relevant to stability analysis, then the harmonic
term in the Taylor expansion of the above free energy is

F2 = N

2

∑
h

�∗(�k(h))F(�k(h))�(�k(h)) (7)

where �k(h) = 2πhα
�bα and �(�k(h)) = F(n(�r ) − c). The stability of a solid solution with

respect to a small concentration wave of a given wavevector �k(h) is guaranteed as long as
F(�k(h)) is positive definite. Instability sets in when F(�k(h)) vanishes, i.e.

F(�k(h)) = kB T i + V (�k(h))c(1 − c) = 0 (8)

T i being the temperature at which the instability sets in for the concentration wave considered.
It appears from the above expression that, under a simple mean field approximation, the
spinoidal is always a parabola in the (t, c) phase diagram, symmetric about x = 0.5. It is the
concentration dependence of the effective pair interactions which brings about the asymmetry.

3. Computational details

3.1. Convergence of augmented space recursion

The effective pair potentials are calculated at the Fermi level so one needs to be very careful
about the convergence of the Fermi energy as well as that of the effective pair potentials. In
fact, errors can arise in the ASR because one can carry out only a finite number of recursion
steps and then terminate the continued fraction using available terminators. Also one chooses
a large but finite part of the augmented space nearest-neighbour map and ignores the part of
the augmented space very far from the starting state. This is also a source of error.

In order to determine the Fermi energy accurately, we have used the energy-dependent
version of ASR. In this version of ASR the defining Hamiltonian is recast into an energy-
dependent Hamiltonian having only diagonal disorder. We then choose a few seed points
across the energy spectrum uniformly, carry out recursion on those points and spline fit the
coefficients of recursion throughout the whole spectrum. This enables us to carry out a large
number of recursion steps since the configuration space grows significantly less faster for
diagonal, as compared with off-diagonal, disorder. For details see [29]

We have checked the convergence of the Fermi energy and effective pair potentials with
respect to recursion steps and the number of seed energy points taking the case of the NiPt3
system. We have found that the Fermi energy and effective pair potentials converge beyond 7
recursion steps and 35 seed energy points. All our calculations reported in the following have
been carried out with 8 recursion steps and 35 seed energy points.

3.2. Anti-phase boundary energy

Kanamori and Kakehasi [30] used the method of geometrical inequalities which is capable of
searching for ground structure. They considered the energy of the three-dimensional Ising-like
model:

Ec =
∑

k

Vk Pk (9)

where Vk is the interaction constant of the kth nearest-neighbour interaction and Pk is the total
number of kth neighbouring pairs in the given configuration. Defining the anti-phase boundary
energy ξ by

ξ = −V2 + 4V3 − 4V4, (10)
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Table 1. The special points and stars of the fcc structure.

k-vector star Members BZ points Ordering structure

〈000〉 [000] �

〈100〉 [100][010][001] X L12, L10

〈1 1
2 0〉 [1 1

2 0][ 1
2 01][01 1

2 ] W A2B2, DO22

[1̄ 1̄
2 0][ 1̄

2 01̄][01̄ 1̄
2 0]

〈 1
2

1
2

1
2 〉 [ 1

2
1
2

1
2 ][ 1

2
1̄
2

1̄
2 ] L L11

[ 1̄
2

1
2

1̄
2 ][ 1̄

2
1̄
2

1
2 ]

the authors proved rigorously that, for ξ > 0, L12 and L10 are the corresponding super-
structures possible at 25 and 50% concentration while for ξ < 0, one has the DO22 and A2B2

super-structures. We have applied these conditions in our calculations to find out the relative
stability between DO22 and L12 structures in Ni3Pt and NiPt3 and those between A2B2 and
L10 in NiPt.

3.3. Special-point ordering

A wide range of phenomena related to order–disorder and magnetic transitions can be explained
using the symmetry properties of the pair potentials (Vi j). If a symmetry element (rotation,
rotation–inversion or mirror plane) of the space group in k space is located at a point h, the
vector representing the gradient ∇h V (h) of an arbitrary potential energy function V (h) at that
point must lie along or within the symmetry element. If two or more symmetry elements
intersect at point h, one must necessarily have

|∇h V (h)| = 0 (11)

since a finite magnitude vector cannot lie simultaneously on intersecting straight lines having
only a point in common. At these so-called special points, the potential energy function V (h)

represents an extremum regardless of the choice of the pair interaction energies. Thus special
points play an important role in the search for lowest energy ordered structures. The points
which differ by a vector of a reciprocal lattice are considered equivalent. In the case of simple
structures with a single atom per unit cell, it is sufficient that two symmetry elements intersect
at special points. These special points are listed in crystallographic tables. They are always
located at the surface of the Brillouin zone. The ‘star’ of a special point vector k is obtained
by applying all the rotations and rotation–inversions of the space group on the vector k. All
these vectors of a star are also considered equivalent. The special points of the fcc structure
are located at the points �, X, W and L of the Brillouin zone, as shown in table 1.

3.4. Ordering energy

The ordering energy is defined as the difference between the formation energy of an ordered
alloy and the corresponding formation energy of a disordered alloy. Since we are dealing with
the effective pair potentials, the ordering energy can be calculated using these pair potentials.
The relation for ordering energy using pair potentials is given as

Eord = 1
2

∑
k

Vkδxoδxk (12)

where δxo (δxk) = xo (xk)−x , xo (xk) = 1 if the site o/k is occupied by an A atom and xo = 0
if the site o/k is occupied by a B atom. For the L12 structure (for Ni3Pt and NiPt3 in our case)
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Table 2. The calculated equilibrium lattice parameters with the choice of neutral charge spheres
including scalar relativistic corrections. The corresponding lattice parameters without relativistic
corrections are given in brackets.

Concentration of Pt Equilibrium lattice parameter in au SR(NR)

0.00(Ni) 6.528(6.568) (expt 6.66)
0.25(Ni3Pt) 6.758(6.890)
0.50(NiPt) 7.127(7.335)
0.75(NiPt3) 7.196(7.467)
1.00(Pt) 7.3685(7.683) (expt 7.41)

the expression for the ordering energy per atom in terms of pair potentials considering only up
to fourth nearest neighbours is given as

Eord
Ni3Pt = − 3

32 [V1 − 1
3 V2 + V3 − 1

3 V4]. (13)

For the L10 structure for NiPt the expression for the ordering energy per atom considering up
to fourth nearest-neighbour pair potentials is given as

Eord
NiPt = − 1

8 [V1 − V2 + V3 − V4]. (14)

Using these two relations we have found the ordering energy for Ni3Pt, NiPt and NiPt3.

4. Results and discussions

We have applied our formalism discussed in the previous section in calculating the effective
pair potentials for the fcc-based NiPt alloys for concentrations x = 0.25, 0.5 and 0.75 of
Pt. The calculation of the effective pair potentials has been restricted up to fourth nearest-
neighbour interactions. Total energy density functional calculations were performed at the
concentrations x = 0.25, 0.5 and 0.75 of Pt. The Kohn–Sham equations were solved in the
local density approximation (LDA). The LDA was treated within the context of LMTO in the
ASA. The calculations were performed non-relativistically as well as scalar relativistically and
the exchange correlation potential of Von Barth and Hedin was used. Two sets of calculations
were performed: one with the same Wigner–Seitz radius (charged spheres) for Ni and Pt,
and in the other set we followed the procedure described by Kudrnovský et al [18], using
an extension of the procedure proposed by Andersen et al [20], which allows us flexibility
in the choice of ASA radii for the constituents. The idea is to choose ASA radii of atomic
species in such a way that the spheres are charge neutral on average. The potential parameters
�I

l and γ I
l of the constituent I were then scaled by the factors (s I /salloy)2l+1 to account for

the fact that the Wigner–Seitz radius of constituent I , s I , is different from that of the alloy,
salloy . These potential parameters were used to parametrize the alloy Hamiltonian. For the
purpose of ASR, seven shell maps were generated and 35 seed energy points recursion was
performed, as explained in the previous section, to calculate the Fermi energy with the second-
order LMTO–ASA Hamiltonian through the recursion method using eight levels of recursion
and the analytical terminator of Luchini and Nex. For the effective pair potentials, we used the
orbital peeling method within the framework of ASR for the calculation of the peeled averaged
Green function described in detail in the earlier section.

In table 2, we have quoted the equilibrium lattice parameters that were used in our
calculations. We obtained these by minimizing the total energies with respect to the lattice
parameters. We have obtained slightly lower equilibrium lattice parameters as compared to
the experimental ones. This is characteristic of the LDA, which overestimates bonding.
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Figure 1. Formation energy versus concentration of Pt with the choice of neutral charge spheres.

Table 3. Formation energies for Nix Pty with the choice of neutral charge spheres including
scalar relativistic corrections. The values in brackets are without relativistic correction. The
corresponding estimates for charged sphere calculations are shown with ∗’s. ∗∗ refers to
calculations without combined corrections. ∗ ∗ ∗ refers to the disordered formation energy.

This work FPLMTO+ LMTO LMTO+ KKR-ASA
y SR(NR) Expt [31] CWM [31] [31] CWM [32] (KKR-CPA)

0.25 −7.50(4.25) −5.16 −6.30 −7.17 −6.66
−7.59∗(4.17)∗

0.50 −9.44(4.74) −7.06 −8.69 −8.5 −8.95 −12.00∗∗ [16]
−9.02∗(4.85)∗ −8.10 [34]

(−7.7∗∗∗) [16]
0.75 −8.15(4.22) −4.78 −6.40 −6.70 −9.12

−3.97∗(6.65)∗

In figure 1 we have shown the formation energy of NiPt alloy systems with various Pt
concentrations based on ordered calculations. It shows that, without the inclusion of relativistic
effects, the formation energy comes out to be positive, which contradicts experimental results.
With the inclusion of scalar relativistic corrections the formation energy comes out to be
negative. This indicates that relativistic effects play an important role in the stability of NiPt
alloys, in agreement with earlier studies. Our results are in closer agreement with previous
works based on the full potential LMTO and the Connolly–Williams technique [31–33] and
with experimental estimates. Singh et al [16] have also calculated the formation energy for
50% of Pt. Their results for the formation energy obtained from ordered calculations without
combined corrections deviates quite a bit from ours as well as from other results based on the
full potential LMTO and the Connolly–Williams technique [31–33], which is presumably due
to the neglect of the combined correction in [16]. Singh et al [34] have also done the calculation
with a combined correction, which shows better agreement. The full potential methods are
expected to provide better estimates than other methods.

We next approached the problem from the disordered end. We started from a completely
disordered alloy and set up concentration wave fluctuations in it to see when this destabilizes the
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Table 4. The effective pair potentials for NiPt alloy systems calculated with potential parameters
taken from calculations with the choice of charged spheres and including scalar relativistic
correction. (O–L) refers to calculations without multipole corrections, M refers to calculations
with multipole corrections and SCI to calculations with screened Coulomb interactions. US–PP
refers to ultrasoft pseudo-potentials. ∗ refers to non-relativistic calculations.

v1 v2 v3 v4

Reference (mRyd/atom) (mRyd/atom) (mRyd/atom) (mRyd/atom)

Concentration of Pt = 25%

Present work 11.36 −0.05 −0.07 −0.41
11.972∗ 0.015∗ 0.054∗ 0.046∗

Concentration of Pt = 50%

Present work 7.832 0.114 −0.129 −0.057
8.597∗ 0.10∗ 0.053∗ 0.263∗

[16] 4.22 1.14 0.22 −1.04
4.94* 0.52∗ 0.32∗ −0.18∗

[14] 9.4∗ 0.8∗ 0.4∗ −0.2∗
[38]
CWM–ASA + M 5.00 0.25 0.19 −0.28
SGPM 5.28 0.06 −0.82 −0.66
[17]
with SGPM
ASA + M(O–L)(SCI) 14.05(15.44) 0.32(−0.10) −1.09(−1.22) −1.76(−0.84)

ASA (SCI) 12.26(14.35) 0.53(−0.15) −1.31(−1.48) −2.14(−0.98)

With Connolly–Williams
ASA + M 12.68 1.31 −0.02 −0.73
ASA + M(O–L) 13.70 0.49 −0.86 −1.39
ASA 14.33 0.28 −1.72 −1.92
US(PP) 12.81 1.30 0.69 −0.40
Direct calculation (SCI)
ASA + M 12.45 0.47 −0.49 −0.65

Concentration of Pt = 75%

Present work 2.785 0.236 −0.116 0.276
3.813∗ 0.361∗ −0.175∗ 0.366∗

disordered phase, as suggested by Khachaturyan [25]. The calculation of the lattice distortion
for disordered alloys has been carried out within the structural model given by the rigid ion
structure (RIS) [35]. According to this model the lattice relaxes in such a way as to keep all the
nearest-neighbour distances close to the sum of the corresponding atomic radii for a particular
concentration. This is found to be a reasonable model to deal with lattice relaxation effects in
non-isochoric alloys [10]. Due to the distortion of the lattice, the structure matrix SR R′

L L ′ (which
is a 9 × 9 matrix for each RR′ pair and a spd basis set) can randomly take values S AA

L L ′ , SB B
L L ′

and S AB
L L ′ , depending upon the occupying of sites R and R′:

SR R′
L L ′ = S AA

L L ′ nRnR′ + S AB
L L ′ [nR(1 − nR′) + (1 − nR)nR′ ] + SB B

L L ′(1 − nR)(1 − nR′)

where

nR =
{

1 if R is occupied by A

0 if R is occupied by B.

Considering the example of the calculation of S AB
L L ′ , where B is the larger atom (e.g. Pt in

the present case), this matrix for a specific pair among 12 nearest neighbours connects an A
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Table 5. The effective pair potentials for NiPt alloys with potential parameters taken from
calculations with the choice of charge neutral spheres including scalar relativistic corrections.
The corresponding estimate for non relativistic calculations are shown with ∗’s.

v1 v2 v3 v4

Reference (mRyd/atom) (mRyd/atom) (mRyd/atom) (mRyd/atom)

Concentration of Pt = 25%

Present work 12.34 −0.092 −0.046 −0.54
13.08∗ −0.021∗ 0.152∗ −0.041∗

Concentration of Pt = 50%

Present work 10.08 0.1 0.004 −0.24
10.111∗ 0.126∗ 0.246∗ 0.175∗

[16] 16.02 1.34 0.06 −1.58
11.96∗ 0.66∗ 0.28∗ −0.46∗

[17]
Neutral (GPM) 5.49 1.22 0.01 −0.73

Concentration of Pt = 75%

Present work 8.9 0.26 0.1 0.02
7.874∗ 0.297∗ 0.276∗ 0.34∗

atom at the site (0, 0, 0) and a B atom, which in the undistorted case would have been at
the position ( a

2 , a
2 , 0) and is now at (( a

2 + d), ( a
2 + d), d), where d is the displacement due

to lattice distortion and a is the lattice constant. We have assumed that the lattice expands
equally in the x , y and z directions. With these new coordinates and assuming that all other
neighbouring coordinates are fixed at undistorted fcc positions (which is the essence of the
terminal point approximation [18]), we have computed the structure matrices S AA

L L′, S AB
L L′ and

SB B
L L′. This takes into account both the effect of radial distortion as well as angular distortion

(the nearest neighbour is now
√

a2

2 + 2ad + 3d2 instead of a√
2

and the nearest-neighbour vector

is (( a
2 +d), ( a

2 +d), d) instead of ( a
2 , a

2 , 0) in the above example). The values of d for S AB
L L′ came

out to be 0.064, 0.052 and 0.054 a for 25, 50 and 75% concentration of Pt. The details of the
calculation scheme can be found in [10]. In figure 2 we have shown the relative magnitudes
of the nearest-neighbour distances for different concentrations of Pt in NiPt alloy systems
compared to values for the average bond length due to Vegard’s law. We have computed
the effective pair potentials for two sets of potential parameters with charged and charge
neutral spheres. Figure 3 shows that the effective pair potentials for NiPt3 is very small in
magnitude using potential parameters with charged spheres. We even used these pair potentials
and calculated the anti-phase boundary energy according to the prescription described in the
previous section. The anti-phase boundary energy comes out to be negative for NiPt3 and
NiPt, indicating the stability of DO22 over L12 for NiPt3 and A2B2 over L10 for NiPt. Further
we calculated the minima of the special points according to the prescription described in the
previous section. In the case of NiPt3 and NiPt shown in figure 5, we could not get the minima
at 〈100〉, which is not quite correct because experiments show that NiPt3 has L12 and NiPt
has L10 ordering. But in the case of Ni3Pt we could get the positive anti-phase boundary
energy as well as the minima at 〈100〉, correctly showing the ordering L12. In figure 4 we
have plotted the effective pair potentials as a function of energy relative to the Fermi energy
and number of neighbouring shells with charge neutral potential parameters including scalar
relativistic corrections, which shows that the first nearest-neighbourpair potentials are larger in
magnitude than the second, third and fourth nearest-neighbour pair potentials. With potential
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Figure 2. Nearest-neighbour distance versus concentration of Pt with the choice of neutral charge
spheres. For comparison the average bond length given by Vegard’s law is shown by a broken line.

Table 6. The anti-phase boundary energies for Nix Pty alloys from charged and neutral sphere
calculations.

APB energy (mRyd/atom)

Charged spheres Neutral spheres

Concentration of Pt Relativistic (non-relativistic)

0.25 1.41(0.017) 2.07(0.793)
0.50 −0.402(−0.94) 0.876(0.158)
0.75 −1.804(−2.525) 0.06(−0.553)

parameters from neutral sphere calculations including scalar relativistic corrections for NiPt3
and NiPt the anti-phase boundary energies come out to be positive and the minima of special
points are at 〈100〉, correctly showing L12 and L10 orderings. If we use charge neutral potential
parameters without including scalar relativistic effects the anti-phase boundary energies come
out to be positive for Ni3Pt and NiPt but negative for NiPt3. This shows that, for NiPt3, both
scalar relativistic as well as charge transfer effects play an important role in predicting the
correct ground state.

So, we argue that, on increasing the concentration of Pt atoms, the careful treatment
to take into account the charge transfer effect becomes increasingly important. In figure 4,
we have also shown the effective pair potentials without scalar relativistic corrections. For
NiPt3 it is clearly seen that the effective pair potentials with scalar relativistic corrections are
larger in magnitude than the non-relativistic ones, which is expected because of the higher
concentration of Pt.

In figure 6 we have plotted the effective pair potentials versus concentration of Pt with
charge neutral potential parameters including scalar relativistic corrections, which show
that the first nearest-neighbour effective pair potentials decrease with an increase of the
Pt concentration. Singh et al [16, 36] have also calculated the effective pair potentials
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Figure 3. The effective pair potentials with potential parameters taken from calculations with the
choice of charged spheres including scalar relativistic corrections.
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Figure 4. (i) The effective pair potentials as a function of energy relative to the Fermi energy
with charge neutral potential parameters including scalar relativistic corrections. (ii) Comparison
between the first nearest-neighbour effective pair potentials with scalar relativistic corrections and
without scalar relativistic corrections by taking charge neutral potential parameters. (iii) The
effective pair potentials as a function of shell numbers with charge neutral potential parameters
including scalar relativistic correction.

using the KKR-CPA-GPM method. Their values of effective pair potentials are much larger
than ours. They pointed out that, due to the large values of effective pair potentials, the
ordering energy and ordering temperatures (transition temperatures) are much higher than
those observed experimentally. Our estimates give rise to instability temperatures which are
closer to the experimental results (shown in figure 7). For example, our estimate for the
instability temperature for the 50% alloy is 1683 K, whereas the estimate from the KKR-CPA
is around 2979 K. The experimental estimate of the transition temperature is 950 K [37]. In the
KKR-CPA-GPM method one considers only the single-site approximation and one does not
take into account any off-diagonal disorder which may arise because of size mismatch of the
constituent atoms. The ASR, on the other hand, as discussed earlier can do this with facility.
Our test calculation for NiPt (50% concentration of Pt) without taking into account lattice
relaxation due to the size mismatch effect gives an estimate of the instability temperature of
2363 K, which is indeed higher than that of our original estimate taking into account lattice
relaxation due to the size mismatch effect. Furthermore, Singh et al [16, 36] in their calculation
for charge neutrality have taken the ratio of Wigner–Seitz radii of Ni and Pt as 0.95. We, on
the other hand, have varied the ratio, with the provision that the total volume is conserved,
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Figure 5. The V (�k) surface for NiPt alloy systems with potential parameters calculated with the
choice of (i) charged spheres and (ii) charge neutral spheres on the kz = 0 plane. The figures in
the inset are the corresponding rescaled V (�k) surfaces on the kz = 0 plane along the (100) to (110)
direction to view the minima.

until, on average, the spheres become charge neutral. We have observed the ratio to be 0.909,
0.913 and 0.919 for the Ni3Pt, NiPt and NiPt3. Given these calculational differences, it is not
surprising that our calculations result in smaller values of the pair potentials, leading to better
estimates of the instability temperatures. The calculations of Pinski et al [14] were carried
out without scalar relativistic effects. Their values are consequently rather large compared
to ours. Ruban et al [17] have calculated pair potentials for 50% concentration of Pt using
different methods and showed that different methods give different values of pair potentials.
Their nearest-neighbour pair potential is slightly higher than ours. The effective pair potentials
obtained by Pourovskii et al [38] from the neutral charge sphere GPM method are similar to
the estimates of Ruban et al [17].

In figure 7 we have shown the ordering energy, anti-phase boundary energy and instability
temperatures versus concentration of Pt with charge neutral potential parameters including
scalar relativistic corrections. The ordering energy in all three cases Ni3Pt, NiPt and NiPt3 is
negative, showing the stability of the ordered structures compared to the disordered solution.
Among all three concentrations, NiPt attains the maximum value of ordering energy, which
confirms that L10 in NiPt systems is the most stable structure. The anti-phase boundary
energy in all these cases Ni3Pt, NiPt and NiPt3 comes out to be positive, showing the ordering
structures L12 for Ni3Pt, L10 for NiPt and L12 for NiPt3, as described above. The magnitude of
the instability temperatures using the charge neutral potential parameters comes out to be larger
than the experimental transition temperatures. However, the qualitative trend of the change of
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Figure 6. The effective pair potentials versus concentration of Pt with the choice of potential
parameters with (i) charged spheres including scalar relativistic correction and (ii) charge neutral
spheres including scalar relativistic corrections.
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Figure 7. Ordering energy, anti-phase boundary energy and instability temperatures versus
concentration of Pt with the choice of charge neutral potential parameters including scalar relativistic
corrections.

instability temperatures with changing concentration of Pt is correct. The calculated qualitative
phase diagram (instability temperature versus concentration of Pt) shows an asymmetric feature
which is not observed experimentally. This could be due to the neglect of magnetism in the
calculations of effective pair interactions, which can have a significant effect particularly at
the high concentrations of Ni. Amador et al [31] also reported the phase diagram (instability
temperature versus concentration of Pt) of this system described by the nearest-neighbour
tetrahedron effective interactions from clusters with appropriate effective volume. Their values
for transition temperatures are smaller than ours but there is high asymmetry in their phase
diagram and even the trend is not the same as found in experiments.
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5. Conclusion

Our total energy calculations for the ordered alloys indicate that, in order to have the correct
sign for the formation energy, it is essential to include relativistic corrections. Our analysis
of the concentration wave approach indicates that, for Ni3Pt, neither relativistic corrections
nor the charge transfer effect is essential for the correct prediction of the L12 ground state.
For NiPt, although scalar relativistic corrections are not essential, careful treatment of the
charge transfer effect is a must to predict the correct ground state (L10). For NiPt3 both these
corrections are essential to predict the correct ground state L12.

Although it seems that qualitatively the relativistic corrections and charge transfer effect
play the essential role only for high Pt content alloys, for quantitative prediction of the instability
temperature both these corrections are required across the concentration range.

The main conclusions of this paper are:

• We have demonstrated that for accurate prediction of the ground state structures and
instability temperatures for alloys with components with large atomic size differences,
like NiPt, it is essential to take into account both relativistic corrections and the averaged
charge neutrality of the atomic spheres.

• We have also demonstrated that ASR combined with the first-principles TB-LMTOs and
orbital peeling are both computationally feasible and suitable techniques for such studies
are described above.

These techniques will form the basis of our further studies into similar alloy systems, but with
magnetic effects included.

References

[1] Gonis A, Zhang X G, Freeman A J, Turchi P, Stocks G M and Nicholson D M 1987 Phys. Rev. B 36 4630
[2] Connolly J W D and Williams A R 1983 Phys. Rev. B 27 5169
[3] Ducastelle F and Gautier F 1976 J. Phys. F: Met. Phys. 6 2039
[4] Gonis A and Garland J W 1977 Phys. Rev. B 16 2424
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